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Abstract

Objective: Accurate diagnosis of early Alzheimer disease (AD) plays a critical role in preventing the progression of memory
impairment. We aimed to develop a new deep belief network (DBN) framework using 18F-fluorodeoxyglucose (FDG) positron
emission tomography (PET) metabolic imaging to identify patients at the mild cognitive impairment (MCI) stage with pre-
symptomatic AD and to discriminate them from other patients with MCI.

Methods: 18F-fluorodeoxyglucose-PET images of 109 patients recruited in the ongoing longitudinal Alzheimer’s Disease
Neuroimaging Initiative study were included in this analysis. Patients were grouped into 2 classes: (1) stable mild cognitive
impairment (n ¼ 62) or (2) progressive mild cognitive impairment (n ¼ 47). Our framework is composed of 4 steps: (1) image
preprocessing: normalization and smoothing; (2) identification of regions of interest (ROIs); (3) feature learning using deep neural
networks; and (4) classification by support vector machine with 3 kernels. All classification experiments were performed with a 5-
fold cross-validation. Accuracy, sensitivity, and specificity were used to validate the results.

Result: A total of 1103 ROIs were obtained. One hundred features were learned from ROIs using the DBN. The classification
accuracy using linear, polynomial, and RBF kernels was 83.9%, 79.2%, and 86.6%, respectively. This method may be a powerful tool
for personalized precision medicine in the population with prediction of early AD progression.
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Introduction

Alzheimer disease (AD) is an insidious progressive neurode-

generative disease. It is also the most common type of senile

dementia. Alzheimer disease mainly manifests as progressive

memory disorder, cognitive disorder, personality change, and

language disorder that seriously affects social, career, and life

functions.1 The etiology and pathogenesis of AD have not been

elucidated; the characteristic pathological changes are tau

hyperphosphorylated neurofibrillary tangles in nerve cells as

well as neuronal loss with glial cell proliferation.2

The early diagnosis of AD is primarily associated with the

detection of mild cognitive impairment (MCI), a prodromal

stage of AD.3,4 Although the memory complaints and deficits

of MCI do not notably affect the patients’ daily activities, it has

been reported that MCI has a high risk of progression to AD or

other forms of dementia. The accurate early diagnosis of AD,

especially identifying the risk of progression of MCI to AD,

affords patients’ with AD awareness of the severity and allows

them to take preventative measures.5,6 Hence, predicting AD

from MCI has an important clinical value.

18F-Fluorodeoxyglucose (FDG) positron emission tomogra-

phy (PET) measures the decline in the regional cerebral metabolic

rate of glucose, offering a reliable metabolic biomarker even in
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patients with presymptomatic AD because the regional metabolic

aberration underlies the functional and cognitive decline seen in

patients with AD.7 Positron emission tomography scans provide

functional information that is unique and unavailable using other

types of imaging. Hence, 18F-FDG-PET is recognized as a poten-

tial tool for presymptomatic diagnosis of AD, offering acceptable

sensitivity and accuracy.8 The analysis of 18F-FDG-PET based

on artificial intelligence, such as machine learning and deep learn-

ing, has gradually become mainstream.9

For example, Zhang10 et al used Multiple Kernel Learning

to build a classifier for MCI and normal group (NC), which was

further used to classify MCI converters and nonconverters.

Two imaging modalities, nuclear magnetic resonance imaging

(MRI) and FDG-PET, were used together with 1 non-imaging

modality, cerebrospinal fluid (CSF) measurements. Young11

et al proposed building an AD versus NC classifier using a

Gaussian process, which was then used to classify MCI con-

verters and nonconverters. Wang12 et al proposed 2 partial least

squares–based approaches to classify MCI converters and non-

converters using MRI, FDG-PET, and florbetapir PET.

Additionally, with the development of deep learning, a few

deep neural networks have also been applied to recognize AD-

related progression patterns. Lu13 et al proposed a multiscale

deep neural network–based deep belief network (DBN) for

classification using measures from a single modality. Liu14

et al constructed a cascaded convolutional neural network to

learn the multilevel and multimodal features of MRI and PET

brain images. Suk15 et al used a deep learning–based latent

feature representation with a stacked autoencoder (SAE) by

using MRI, FDG-PET, and CSF data. They also16 found a

novel method for a high-level latent and shared feature repre-

sentation from neuroimaging modalities via deep learning; they

used Deep Boltzmann Machine (DBM), found a latent hier-

archical feature representation from a 3-dimensional (3D)

patch, and then devised a systematic method for a joint feature

representation from the paired patches of MRI and PET with a

multimodal DBM.

However, these existing methods have limitations. Most of

these attempts toward developing automated tools to identify

progressive MCI have resulted in limited accuracy (less than

80%). Therefore, the present study aimed to propose a novel

framework with a deep neural network based on DBN, which

can effectively learn the patterns of metabolic changes

between MCI converters and nonconverters using FDG-PET

images.

Materials and Methods

As shown in Figure 1, the proposed framework is composed of

4 steps: (1) image preprocessing, including normalization and

smoothing; (2) identification of regions of interest (ROIs); (3)

feature learning, including unsupervised pretraining in DBN

and supervised fine-tuning in back-propagation (BP) network;

and (4) discrimination of MCI-to-AD converters from patients

with normal MCI using support vector machine (SVM).

Figure 1. The workflow in this analysis was composed of 4 steps: image preprocessing, obtaining regions of interest, feature learning, and
support vector machine (SVM) classification.

2 Molecular Imaging



Materials

Data for this article were obtained from the publicly available

Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-

base17 (http://adni.loni.usc.edu). The ADNI was launched in

2003 as a public–private partnership, led by principal investi-

gator Michael W. Weiner, MD, VA Medical Center and Uni-

versity of California San Francisco. Patients were recruited

from over 50 sites across the United States and Canada. This

multisite open-source data set was designed to accelerate the

discovery of biomarkers and to identify and track AD pathol-

ogy. For up-to-date information, see http://www.adni-info.org.

Participants (n ¼ 109) were evaluated at baseline and in

6- to 12-month intervals following initial evaluation for up to

10 years. 18F-fluorodeoxyglucose-PET scans acquired at the

baseline visit were used in the present analysis. We included

the patients who were diagnosed with MCI and had a Mini-

Mental State Examination (MMSE) score of at least 24 points

at the time of PET imaging. Additionally, we requested a min-

imal follow-up time of at least 6 months. The patients were

stratified into patients with MCI who converted to AD (MCI-

to-AD converters, progressive mild cognitive impairment

[pMCI]) and those who did not (MCI nonconverters, stable

mild cognitive impairment [sMCI]).

The PET data acquisition details can be found online in the

study protocols of the ADNI project. Images were acquired 30

to 60 minutes after the injection. Age, sex, and MMSE did not

differ significantly between the 2 groups (P > .1). Demographic

and clinical information of these patients are described in

Table 1.

Image Preprocessing

Image data were processed using statistical parametric map-

ping (SPM8; http://www.fil.ion.ucl.ac.uk/spm/) implemented

in MATLAB R2014b.18

The aim of preprocessing was to spatially normalize the

images into Montreal Neurological Institute (MNI) space. The

image preprocessing was composed of 2 steps: normalization

and smoothing. All original DICOM data were converted to the

NIfTI format file using dcm2nii. For every patient, their images

were spatially normalized to the standard MNI space provided

by SMP8 with linear and nonlinear 3D transformations. After

that, the normalized images had a spatial resolution of 91� 109

� 91 with a 2 � 2 � 2 mm3 voxel size. Finally, normalized

FDG images were smoothed using an isotropic Gaussian

smoothing kernel with a full-width at half-maximum of 10 �
10 � 10 mm3.

Region of Interest

In our study, a region-growing algorithm19 is set to extract

spatially constrained atoms in whole brain images to reduce

the computational burden. These ROIs in the sample series are

composed of voxels whose series share some similarity; some

regions are homogeneous while some are heterogeneous. We

therefore aim to segment the brain cortex into a set of disjoint

regions, each being a set of voxels connected with respect to its

26-connexity; the resulting regions are homogeneous in the

whole series. This is achieved by means of a competitive

region-growing algorithm, which is an iterative procedure for

image segmentation.

This procedure starts from small regions, in our case, the set

of all singletons of voxels in the PET images, which grow

simultaneously at each step by merging with other neighboring

voxels or regions on the basis of similarity criteria.

Because similarity is measured through correlation, we

chose to measure the similarity between 2 regions as the mean

correlation between the series of any 2 voxels, each belonging

to a different region. The similarity measure between 2 regions

is as follows:

sðC;DÞ ¼ 1
#C#D

X
v;w2C�D

corrðyv; ywÞ; ð1Þ

where corr is Pearson linear correlation, #C is the number of

voxels in region C, and yv is the series of voxel v, yw is the

series of voxel w.

For a single voxel v, the neighborhood is defined N(v),

which is the 26-connected neighborhood for v. The neighbor-

hood of region C can be defined as follows:

NnðCÞ ¼
�
D 2 En;D 6¼ Cj9ðv;wÞ 2 C � D;w 2 NðvÞ

�
; ð2Þ

where En are candidates for merging in step n. Since all regions

compete at each step for merging, it is necessary to define a

merging rule.

We used the mutual nearest neighbor principle,20 which is

designed to merge the most similar regions at first. A pair of

neighboring regions, such as C and D, will merge if it fulfills

the following condition:

mnnðC;DÞ ,

C ¼ arg min
K 2 NnðDÞ

sðK;DÞ

and
D ¼ arg min

L 2NnðCÞ
sðC; LÞ

:

8>><
>>: ð3Þ

The algorithm stops when all regions have reached the crit-

ical size or when additional merging is not possible.

In this analysis, according to the algorithm, all 3D 18F-

FDG-PET images in the training data set were stacked along

a fourth (subject) dimension (4D), creating a single 4D

image to be used in the region-growing algorithm, which

was set to extract spatially constrained atoms with a size

Table 1. Patient Demographics.

Group
Gender,

M/F Age, Years
Conversion,

Month
MMSE
Score

pMCI (n ¼ 47) 27/20a 73.3 + 7.1a / 27.1 + 1.2a

sMCI (n ¼ 62) 38/24a 75.8 + 6.1a 12.2 + 4.38 27.8 + 1.4a

Abbreviations: AD, Alzheimer disease; MCI, mild cognitive impairment; MMSE,
Mini-Mental State Examination; pMCI, progressive mild cognitive impairment;
sMCI, stable mild cognitive impairment.
at test, P > .1.
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threshold of 1000 mm3. To limit the memory demand, the

region-growing algorithm was applied independently in

each of the 116 areas of the anatomical automatic labeling

(AAL) template.21

Feature Learning

Hinton et al22 reported that deep supervised nets can be trained

by adding an unsupervised pretraining by restricted Boltzmann

machine (RBM) for parameter initialization. In the deep learn-

ing model, with a relatively small number of training samples,

the DBN, which was stacked with RBMs, has certain

advantages.23

A DBN is a deep architecture that is suitable for delivering

nonlinear and complicated machine-learning information. A

DBN model is actually a multilayer perception neural network

with 1 input layer, 1 output layer, and several middle-hidden

layers unit. The higher level layer connects to its lower layer by

RBM,24 which uses the result of the lower layer to activate the

next higher level layer. For DBN, the training contains 2 steps,

unsupervised pretraining and supervised fine-tuning.

Unsupervised pretraining. First, the model is pretrained as an

SAE. The autoencoder acts as an unsupervised concept extrac-

tor for the original data samples. It learns the latent represen-

tation in the hidden layer (encoder) and reconstructs the data in

the output layer (decoder). The core of this step is RBM.

Restricted Boltzmann machine is based on the assumption25

of the Boltzmann distribution between observed and hidden

variables generalized to Gaussian distributions, which setup

the foundation of our model.

A simple RBM is composed of a visible layer and a hidden

layer. The visible layer has m nodes, v1; v2 . . . vmf g. The hid-

den layer has n nodes, h1; h2 . . . hnf g. b1; b2 . . . bnf g and

c1; c2 . . . cnf g are the bias of each node, and w is the weight

value between nodes.

For pairwise training between nodes of input layers and

hidden layers, a conditional Gaussian distribution is used:

Ppðhj ¼ 1jvÞ ¼ sig cj þ
Xm
i¼1

vjwij

 !
: ð4Þ

Ppðvi ¼ 1jhÞ ¼ sig bj þ
Xn
j¼1

hjwij

 !
; ð5Þ

where sig is the logistic function: sigðxÞ ¼ 1
1þe�x. The KL dis-

tance between the sample distribution and the edge distribution

of the RBM network can represent the difference between

them:

KLðqjjpÞ ¼
X
X2O

qðxÞln qðxÞ
pðxÞ ¼

X
X EO

qðxÞlnqðxÞ �
X
X EO

qðxÞlnpðxÞ;

ð6Þ
where O is the sample space, q is the distribution of input

samples, q(x) is the probability of the training sample, and P

is the edge distribution represented by the RBM network. We

minimize the KL to fit the training data during training

progress.

Supervised fine-tuning. Because the deep network is prone to

local optimization, the choice of initial parameters has a great

impact on the final convergence location of the network.

Therefore, DBN training is divided into pretraining and

fine-tuning.

The parameters trained by DBN are used to initialize a BP

network with the same structure. Back-propagation network

adopted a gradient descent algorithm to fine-tune the weight

of the whole network to coordinate and optimize the para-

meters of the whole DBN. The feature vector mapping of the

DBN is optimized, and the size of the input apace is

simplified.

We take some measures to reduce chances of overfitting

during training progress—(1) Dropout strategy26: Dropout is

a popular strategy to prevent overfitting. We choose the per-

centage of units kept to feed to the next layer. For training, half

of the hidden units were dropped randomly in each iteration,

while the other half were retained to feed features to the next

layer. For testing, all the units were kept to classify patients. (2)

Regularization strategy27: The purpose of adding regularization

terms is to reduce the error of the test set at the cost of increas-

ing the error of the training set. Because in the case of a small

amount of data, if the training set error is small, it may appear

overfitting. L2 regularization is used in this analysis to reduce

the summation of parameters squared.

Classification of SVM

To perform classification tasks, we use a model such as SVM28

to replace the traditional SoftMax function in DBN29 because

SVM achieves maximum margin classification in the training

data set. Additionally, SVM is a more powerful model when

the kernel function is adjusted to support nonlinear mapping.

The input of the SVM is the result of feature coding of the

original regions ROIs by the DBN. In the classification experi-

ment, 3 kernel functions (linear, polynomial, and radial basis)

were used for detecting features’ generalization ability and

classification reliability.

Comparison Experiments

Two shallow models are applied for comparison. The first

one is a standard SVM without deep architecture-based fea-

ture learning. We use the average metabolism of 90 regions

extracted from the standard AAL template as the SVM fea-

ture input. For the second model, we use principle compo-

nent analysis (PCA) for feature extraction. In the training

set, we used PCA to reduce the dimension of ROIs obtained

by the region growth algorithm. The number of PCA

eigenvectors was chosen to retain 95% variance, and the

feature after dimension reduction was used as the feature

input of SVM.
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Three different kernel functions were used in SVM. A 5-fold

cross-validation method is used for classification. The accu-

racy, sensitivity, and specificity are used to evaluate the model

performance.

Results

Region of Interest

According to this competitive region-growing algorithm, we

finally obtain 1103 ROIs, as shown in Figure 2. Although

voxels in these regions in the series are similar, for 2 types

of samples, pMCI and sMCI, some regions are heteroge-

neous and some are homogeneous. These ROIs may offer

enhanced clinical utility by utilizing information specific to

PET signals.

Figure 3 shows the average of standardized uptake value

ratio of samples in all ROIs. Each column represents a single

sample, and each row represents the same ROI from the region-

growing algorithm. In addition, we observed from the figure

that in some ROIs, the average metabolism of the 2 types of

samples was significantly different. This proves that some

ROIs we extracted were heterogeneous, which can reflect the

difference between pMCI samples and sMCI samples.

Feature Learning

Age, sex, and MMSE did not differ significantly between the 2

data sets as shown in Table 1; we propose DBN as the main

deep model for feature learning in this study. We use metabo-

lism features in ROIs as input of our single-mode DBN. The

output is the result of relearning the features. We aim to pre-

serve the original features as much as possible while reducing

the dimensions of features. Thus, the essence of the DBN is the

process of feature learning, that is, achievement of enhanced

feature expression.30

Our deep model is shown in Figure 4. First, a DBN

stacked by 3 RBMs was used for feature dimension reduc-

tion and recoding like an autoencoder. The input feature

dimension is 1103 (the number of ROIs), and the output

feature dimension is 100. For each layer, the number of

nodes is 1000, 500, 500, and 100. Then, the trained para-

meters of DBN were used to initialize a BP network with

the same structure, and the parameters of last hidden layer

are the last extracted features.

All the training steps shared the same BP approach. The cost

function was minimized using gradient descent with mini-

batches31; the training set was randomly divided into several

mini-batches, or subsets, with 5 samples in each batch. In each

iteration, only one of these mini-batches was used for minimi-

zation. After all the samples were used once for training, the

training set was ordered and divided again so that batches in

each different echo will not have the same samples. The initial

learning rate was set to 0.001.

We used training cost and accuracy of final SVM classifi-

cation to measure the deep feature learning model. As shown in

Figure 5, we found that when the number of network epoch

increased, the accuracy of classification rise, and the training

cost decreased. When the number of epochs achieved 90, the

cost and accuracy gradually tend to be stable. Hence, we

choose 90 epochs in our experiments.

Classification of SVM

The mean accuracy, sensitivity, and specificity of the cross-

validation experiment are shown in Figures 6 and 7 and Table 2.

In the classification experiment, using features from the DBN

with radial basis, kernel, linear, and polynomial achieved accura-

cies of 86.6%, 83.9%, and 79.2%, respectively, to distinguish

Figure 2. The 1103 regions of interest (ROIs) extracted from the region-growing algorithm.

Figure 3. Average of standardized uptake value ratio of samples in all
regions of interest (ROIs).
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MCI-to-AD converters from stable patients with MCI. As a

result, classification experiment with RBF kernel has best accu-

racy, specificity, and area under the curve (AUC) value.

Comparison Experiment

The results of the comparison experiment are shown in Figure 8

and Table 3. As a comparison, the classification accuracy of the

combination of PCA and SVM and AAL and SVM was 79.5%
and 63.1%, respectively. As we can see from the Table 3, ROIs

extracted by the region-growing algorithm better reflects the

differences compared to the AAL template; compared to tradi-

tional PCA, DBN has better feature extraction capability. The

DBN shows more profound feature information through layer-

Figure 5. The influence of the number of epochs on the accuracy and
cost of classification in deep belief network (DBN).

Figure 6. Receiver operating characteristic (ROC) curves with dif-
ferent kernels.

Figure 7. Receiver operating characteristic (ROC) curves with 5-fold
cross validation.

Table 2. Classification Performance With Different Kernels.

RBF (%) Linear (%) Poly (%)

Accuracy 86.6 83.9 79.2
Sensitivity 89.5 89.6 98.3
Specificity 85.2 79.2 62.3
AUC 0.908 0.887 0.846

Figure 4. Deep belief network for feature learning.
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by-layer feature transformation and extraction, overcoming the

fact that PCA cannot extract nonlinear information.

Discussion

In this study, we achieved an 86% accuracy to predict AD

from MCI, which is a better result than others reported in

the literature. Table 4 shows the results from current meth-

ods to predict the conversion of MCI. Although the data

used in different studies are not identical, they all come

from the ADNI database; therefore, they share a similar

acquisition and preprocessing procedure, allowing compar-

isons to be made.

As shown in Table 4, we achieved the best results in accu-

racy and sensitivity and achieved almost the best results in

specificity. Possible reasons include the following:

(1) For the extraction of ROIs, we use a competitive

region growth algorithm to extract ROI. In the study

by Lu13 et al, the voxels in each ROI were clustered

into patches through k-means clustering based on the

Euclidean distance of their spatial coordinates, which

means that voxels spatially close to each other would

belong to the same patch. Suk15 et al performed a 2-

sample t test on each voxel, selected voxels with a P

value smaller than the predefined threshold, and

extracted patches as ROIs with a fixed size by taking

each of these voxels as a center. The results show that

the ROIs extracted through our method have greater

differences. We obtain the ROIs with spatial coordi-

nates according to Pearson correlation of the sample

series, which can reflect better differences between

samples than single voxel or the ROIs obtained based

on the Euclidean distance.

(2) In terms of feature learning, we adopted an improved

DBN model that reduces the complexity of the whole

prediction algorithm while using single modality data.

A DBN adopts the training and fine-tuning mode of

training, which means that unsupervised pretraining

can help deep learning find better optimal parameters

for reducing errors, effectively avoiding the problem

of parameter selection. Therefore, only a small amount

of a sample can train a good classifier using a DBN,

which has obvious advantages in the recognition of a

small sample.

(3) For the classification, we use SVM for classifiers to

replace SoftMax in last layer of BP network because

SVM has prominent advantages in solving the problem

of identifying small samples.

Although our method based on a single modality can

guarantee a high level of specificity, accuracy, and sensitiv-

ity, some limitations and disadvantages also exist in our

method:

Figure 8. Receiver operating characteristic (ROC) curves of the
comparison experiment.

Table 3. Classification Performance of the Comparison Experiment.

Accuracy, % Sensitivity, % Specificity, %

AAL þ SVM 63.1 84.1 24.2
PCA þ SVM 79.5 76.2 80.2
DBN þ SVM 86.6 89.5 85.1

Abbreviations: AAL, anatomical automatic labeling; DBN, deep belief network;
PCA, principle component analysis; SVM, support vector machine.

Table 4. Classification Performance of the Published State-of-the-Art
Methods.

Reference Modality Patients Accuracy Sensitivity Specificity

Zhang10

et al,
2011

PET þ MRI
þ CSF

80 73.9 68.6 73.6

Young11

et al,
2013

MRI þ PET
þ APOE

143 69.9 78.7 65.6

Wang12

et al,
2016

PET þ MRI
þ ADAS

129 86.1 81.3 90.7

Liu32 et al,
2017

PET þ MRI 234 73.5 76.19 70.37

Cheng5

et al,
2017

PET þ MRI
þ CSF

99 79.4 84.5 72.7

Zhu33 et al,
2015

PET þ MRI 99 72.4 49.1 94.6

Lu13 et al,
2018

PET þ MRI 521 81.55 73.33 83.83

Lu13 et al,
2018

PET 626 81.53 78.20 82.47

Suk16 et al,
2015

PET þ MRI
þ CSF

99 83.3 – –

Proposed
method

PET 109 86.6 89.5 85.2

Abbreviations: CSF, cerebrospinal fluid; MRI, magnetic resonance imaging; PET,
positron emission tomography; ADAS, alzheimer’s disease assessment scale;
APOE, apolipoprotein E.
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(1) Due to the limited data in the ADNI database, we only

used a limited data set, so the network structure used in

our experiment to discover information from MCI is

not necessarily suitable for other data sets. Also, the

number of cases in this study appeared not much for a

current AI learning, and it is still not enough to gen-

eralize our experimental results. We need more in-

depth research, such as learning the optimal network

structure from big data, for a practical application of

deep learning in clinical scenarios.

(2) Many other modality characteristics in the ADNI data

set, such as clinical information, age, education, and

CSF parameters, are not used, and it is still necessary

to design a multimodal deep learning network to learn

potential relationships among features from multiple

modalities.

(3) There is no general and intuitive way to visualize the

training weights or interpret the underlying character-

istics. Effectively visualizing or interpreting the repre-

sentation of potential features is a major challenge that

needs to be addressed by both machine learning and

the clinical neuroscience community.

Conclusion

In this study, a new framework for the early diagnosis of AD

using DBN to extract the features of FDG-PET data is pro-

posed. The framework improves the performance of deep

neural networks in identifying sMCI and pMCI objects by

using the strategy of extracting high-dimensional difference

ROIs in advance. Experiments in the FDG-PET image database

of 109 patients provided evidence to support 2 assertions: (1)

The proposed method, which uses only features derived from a

single FDG-PET modality, can be superior to existing methods

that use multimodal features in the sMCI versus pMCI classi-

fication task; (2) the proposed network can learn the discrimi-

nant mode from the difference ROIs to obtain a more robust

classifier with better discriminant performance. We argue,

therefore, that the proposed method can be a powerful means

to represent neuroimaging biomarkers for the early diagnosis

and prediction of AD populations.
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